

Calabi-Yau Pairs of Complexity Zero

Work in progress w/ F. Figueroa

Outline

- 1 Background
- 2 Main Theorems
- 3 Examples
- 4 Proofs
- 5 Conclusion

1 - Background

Work over C.
All varieties are normal & Q-factorial by default.

Definitions

- "A" log Calabi-You poir" (logCY) is a pair (x.13) which is log cononical (1c) w/ Kx+B~aO.
- The "complexity" of a pair (x, 13) is c(x, 13) = dim(x) + p(x) |B|

Examples

2) If
$$x \approx Calabi-Yau$$
 ($K_x \sim ao$) then
$$C(x) = C(x,o)$$

$$= dim(x) + p(x).$$

2) If
$$x \in -mK_x$$
 very cample, for $D+1-mK_x$]

general $(x, \pm D)$ is low $(x) \notin (x) \in \mathcal{E}$
 $c(x, \pm D) = dim(x) + p(x) - \pm \frac{\pi}{2}$

Theorem (Brown-McKernan-Svaldi-Zong '18)

- ·IF (X,B) is $C \in -(K_x+B)$ is nef, then $C(X,B) \ge 0$.
- *IF, in adittion, $c(x,B) \neq 1$, then there is a toric log Calabi-Yau pair (x,Δ) ω / LBJ $\neq \Delta$.

Remarks

- · Conjectured by Shokurov in 2000.
- · Related to Koboyoshi-Ochiai's choracter ization
 of proj. spaces in terms of "Fano index."

Applications and Connections

- i) Polarized Endomorphisms
 (Meng-Zhang 20, Meng-Zhong 23)
- ii) Minimal Log Discrepancies
 (Moraga '23)
- iii) Mirror Symmetry

 (Gross Hacking Keel '15)
- iv) Dual Complexes

 (Mauri '20, Mauri Moraga '24)

One More Definition

· Let (x,B) log (y peir.

Its "binational complexity" is

Chir (x,B) = inf{c(x',B') | (x',B') ~uep (x,B)}.

$$(\mathbf{p}^2,\mathbf{c}) \qquad (\mathbf{p}^2,\mathbf{Q},\mathbf{L})$$

(P2, L1+ L2+ L2)

2 - Main Theorems

<u>Theorem (Brown-McKernan-Svaldi-Zong '18)</u>

Let (X,B) be a log (Y) pair (X,B)=0. Then there is a toric log (Y) pair (X,A) (X,A) (X,A)

Theorem 1 (E.-Figueroa, In progress)

Let (x_i, B) be logCY $w/(x_i, B) = 0$. There are toric logCY (x_i, A_i) , (x_i, A_i) E nonnegative $b_{i,i-1}$, $b_i \in [0,i] \cap Q$ $w/(\sum_{i=1}^{n} b_i = 1)$ $S = \sum_{i=1}^{n} b_i A_i$.

Theorem (Mauri-Moraga '24)

Let (X,B) be a log (X) pair (X) (X

Theorem 2 (E.-Figueroa, In progress)

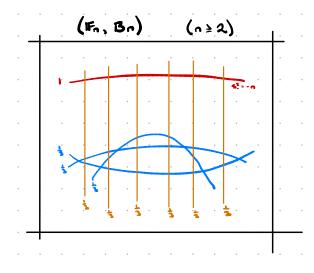
Let (x,B) be $\log CY$. Then $c_{x,B}(x,B) = 0$ if e only if there is a crepant biretonal map $\varphi: (Y,B_T) = -1$ (x,B)

1) CLY, B, 1 = 0,

2) y is a "generalized Bott tower."

3 - Examples

Optimality of Theorem 2



· Consider creport
$$\varphi$$
: (IFn, Bn) ---> (x, B)

 $W \mid \times \cong \mathbb{P}^2$, IFm (M±0).

**Claim: $\times \cong \mathbb{F}_{n+r}$ $w \mid r \neq 0$, $B \neq B_{n+r}$.

· All q-1-exc curves are non-terminal

places of LFn. Bn.)

~ f just blows up points on sin.

· Some of blows up to points.

then a blows up to or toll points.

· Sin port of anti-conomical cycle at all steps

27 27 27

=> 5 - C = {0,13 whenever C is (-1)-curve

=> (q+5-)2 = - (n+t) + t+1

= - - ---

ヒード

-> X 4 PZ

S= (x)4 (-

=> g blows up to pts

>) (p. 5 n) 2 4 - n

シメルドするとしてもつ

Motivation for Proof of Theorem 1

• Idea

Obtain toric log(Y (X,A) W/ LB1 & A ETB7.

Define

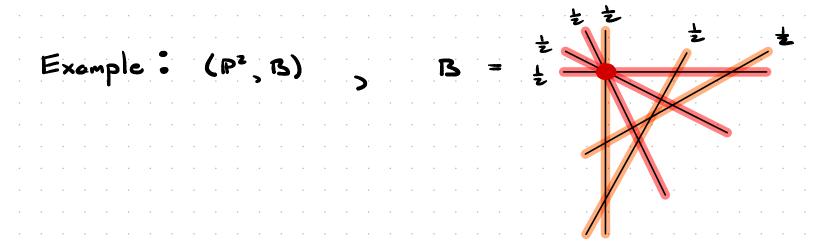
$$A_{1} = \lambda_{1}(X_{1}B; A_{1})$$

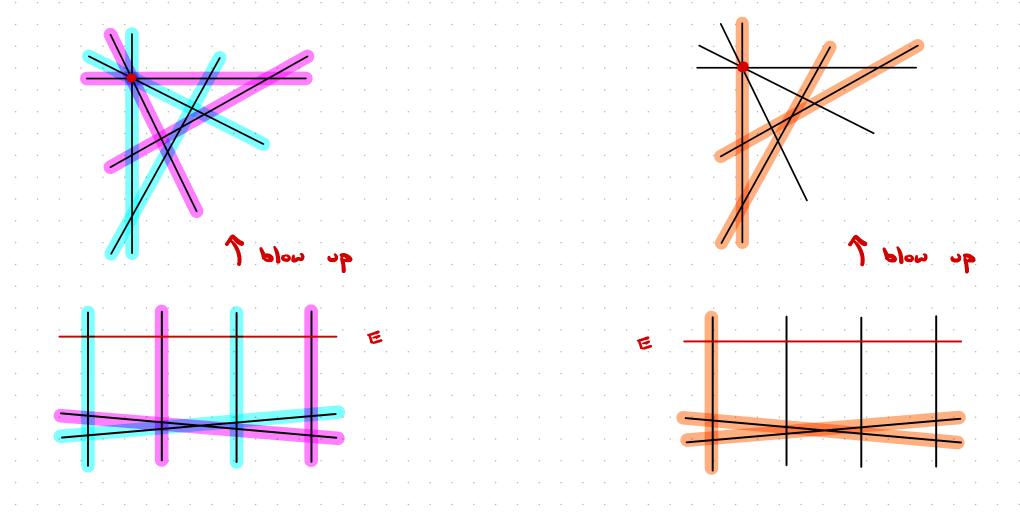
$$= \max \{ \lambda \in Eo_{1}, I \mid \lambda A \in B \}$$

Two west

1)
$$\lambda_r = 1$$
 => $R = \Delta$ & (x,B) force by (Y) .

2)
$$\lambda(1)$$
 = $\frac{B-\lambda_1A}{1-\lambda_1}$ nonzero,





New Idea

Define $A(x, B) = \{\Delta \mid Cx, A) + topic wasy,$ LBJ & $\Delta \in \Gamma B T \}$

Induct on 1ALX,B)1

· Given 1+ Alx, B), define 1, us before &

$$\lambda_2 = \lambda_2(\lambda_i B_j A)$$

= sup $\{\lambda \in [0,\lambda,) \mid (x,B_{d,\lambda} = \frac{B-\lambda d}{1-\lambda}) \text{ is le } \}$

4 - Proofs

Lemma 1 IF

124), ther

A(x, BA, Az) C A(x,B)

Containment is strict when 1z=1,41

Lemma 2 (x,B) logCY of complexity zero.

Let P: Y >> x extract only le places of (x,B).

Then

1) log pullback (Y,By) is logCY of compl. zero.

2) F. : H(Y,By) -> H(x,B) is injective

W) image {4 + A(x,B)} = le place for

(x,A) for all Fexe E}

Lemma 3 If 1261, there is an ic place of (x, Ba, 22) which isn't on ic place of (x, A).

Proof of Theorem 1

- · Induct on IAU(B)
 - · "Key Argument" Suppose 4+ Alx, B) has 2, <1
 - · Case 1: 1/2 = 1, < 1.
 - $(x, B_{4,2})$ is log(x of completero $(x, B_{4,2})$ $(x, B_{2,2})$ $(x, B_{1,2})$
 - · Cose 2: 2242,41
 - TO (Y, By) —) (x, Bd, xz) dH bbco-up

 w/ some f-exc Ecy which isn't

 cun be place for (x,d).
 - ~> | A(7, B,) | < | A(x, Bd, Az)) = | A(x, B) |

· Bose Cose (181 =1)

· Use "Key Argument" to conclude, by controliction, $\lambda_i = 1$.

MB=4, (x,B) torce lug CY.

· Inductive Step:

· Cose 1: Bd, Az = Z=, bid:

へ) B = カンム + 乙ニー、(1-カン) bi4;

· Cose 2: By = Z=, b= T;

かる= 224+ Z=, (1-12) b: ない.

Corollary

Let (X,B) be a dlt log(X) pair of complexity zero. Then (X,LBI) is log smooth.

Proof

- 1) Irred. components of Sing(x) are toric strata for all toric log(Y (X, Δ) .
- 2) Divisors extracted by normalized blow-up of such irred. components are k places for all toric logCY (x, Δ) , hence also for (x, B) by Theorem 1.
 - => Irred. components of Sing(x) are le centers of (x,B).
- 3) The dit condition requires all k centers to intersect the smooth locus.

Main Idea of Theorem 2

- · Given (X.B) logCY of complexity zero, X fails to be a generalized Bott tower only when it is singular in "predictable" ways.
- The corollary (É its proof) gives us information about le centers/places in this case.

 We use this to perform birational modifications that fix our problems while maintaining control over the complexity.